hekate/bootloader/hos/pkg2.c

888 lines
24 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2024 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <bdk.h>
#include "hos.h"
#include "pkg2.h"
#include "pkg2_ini_kippatch.h"
#include "../config.h"
#include <libs/compr/blz.h>
#include <libs/fatfs/ff.h>
#include "../storage/emummc.h"
//#define DPRINTF(...) gfx_printf(__VA_ARGS__)
#define DPRINTF(...)
extern hekate_config h_cfg;
extern const u8 package2_keyseed[];
u32 pkg2_newkern_ini1_info;
u32 pkg2_newkern_ini1_start;
u32 pkg2_newkern_ini1_end;
enum kip_offset_section
{
KIP_TEXT = 0,
KIP_RODATA = 1,
KIP_DATA = 2,
KIP_BSS = 3,
KIP_UNKSEC1 = 4,
KIP_UNKSEC2 = 5
};
#define KIP_PATCH_SECTION_SHIFT (29)
#define KIP_PATCH_SECTION_MASK (7 << KIP_PATCH_SECTION_SHIFT)
#define KIP_PATCH_OFFSET_MASK (~KIP_PATCH_SECTION_MASK)
#define GET_KIP_PATCH_SECTION(x) (((x) >> KIP_PATCH_SECTION_SHIFT) & 7)
#define GET_KIP_PATCH_OFFSET(x) ((x) & KIP_PATCH_OFFSET_MASK)
#define KPS(x) ((u32)(x) << KIP_PATCH_SECTION_SHIFT)
#include "pkg2_patches.inl"
static kip1_id_t *_kip_id_sets = _kip_ids;
static u32 _kip_id_sets_cnt = ARRAY_SIZE(_kip_ids);
void pkg2_get_ids(kip1_id_t **ids, u32 *entries)
{
*ids = _kip_id_sets;
*entries = _kip_id_sets_cnt;
}
static void parse_external_kip_patches()
{
static bool ext_patches_parsed = false;
if (ext_patches_parsed)
return;
LIST_INIT(ini_kip_sections);
if (ini_patch_parse(&ini_kip_sections, "bootloader/patches.ini"))
{
// Copy ids into a new patchset.
_kip_id_sets = zalloc(sizeof(kip1_id_t) * 256); // Max 256 kip ids.
memcpy(_kip_id_sets, _kip_ids, sizeof(_kip_ids));
// Parse patchsets and glue them together.
LIST_FOREACH_ENTRY(ini_kip_sec_t, ini_psec, &ini_kip_sections, link)
{
kip1_id_t *kip = NULL;
bool found = false;
for (u32 kip_idx = 0; kip_idx < _kip_id_sets_cnt + 1; kip_idx++)
{
kip = &_kip_id_sets[kip_idx];
// Check if reached the end of predefined list.
if (!kip->name)
break;
// Check if name and hash match.
if (!strcmp(kip->name, ini_psec->name) && !memcmp(kip->hash, ini_psec->hash, 8))
{
found = true;
break;
}
}
if (!kip)
continue;
// If not found, create a new empty entry.
if (!found)
{
kip->name = ini_psec->name;
memcpy(kip->hash, ini_psec->hash, 8);
kip->patchset = zalloc(sizeof(kip1_patchset_t));
_kip_id_sets_cnt++;
}
kip1_patchset_t *patchsets = (kip1_patchset_t *)zalloc(sizeof(kip1_patchset_t) * 16); // Max 16 patchsets per kip.
u32 patchset_idx;
for (patchset_idx = 0; kip->patchset[patchset_idx].name != NULL; patchset_idx++)
{
patchsets[patchset_idx].name = kip->patchset[patchset_idx].name;
patchsets[patchset_idx].patches = kip->patchset[patchset_idx].patches;
}
kip->patchset = patchsets;
bool first_ext_patch = true;
u32 patch_idx = 0;
// Parse patches and glue them together to a patchset.
kip1_patch_t *patches = zalloc(sizeof(kip1_patch_t) * 32); // Max 32 patches per set.
LIST_FOREACH_ENTRY(ini_patchset_t, pt, &ini_psec->pts, link)
{
if (first_ext_patch)
{
first_ext_patch = false;
patchsets[patchset_idx].name = pt->name;
patchsets[patchset_idx].patches = patches;
}
else if (strcmp(pt->name, patchsets[patchset_idx].name))
{
// New patchset name found, create a new set.
patchset_idx++;
patch_idx = 0;
patches = zalloc(sizeof(kip1_patch_t) * 32); // Max 32 patches per set.
patchsets[patchset_idx].name = pt->name;
patchsets[patchset_idx].patches = patches;
}
if (pt->length)
{
patches[patch_idx].offset = pt->offset;
patches[patch_idx].length = pt->length;
patches[patch_idx].src_data = (char *)pt->src_data;
patches[patch_idx].dst_data = (char *)pt->dst_data;
}
else
patches[patch_idx].src_data = malloc(1); // Empty patches check. Keep everything else as 0.
patch_idx++;
}
patchset_idx++;
patchsets[patchset_idx].name = NULL;
patchsets[patchset_idx].patches = NULL;
}
}
ext_patches_parsed = true;
}
const pkg2_kernel_id_t *pkg2_identify(u8 *hash)
{
for (u32 i = 0; i < ARRAY_SIZE(_pkg2_kernel_ids); i++)
{
if (!memcmp(hash, _pkg2_kernel_ids[i].hash, sizeof(_pkg2_kernel_ids[0].hash)))
return &_pkg2_kernel_ids[i];
}
return NULL;
}
static u32 _pkg2_calc_kip1_size(pkg2_kip1_t *kip1)
{
u32 size = sizeof(pkg2_kip1_t);
for (u32 j = 0; j < KIP1_NUM_SECTIONS; j++)
size += kip1->sections[j].size_comp;
return size;
}
void pkg2_get_newkern_info(u8 *kern_data)
{
u32 crt_start = 0;
pkg2_newkern_ini1_info = 0;
pkg2_newkern_ini1_start = 0;
u32 first_op = *(u32 *)kern_data;
if ((first_op & 0xFE000000) == 0x14000000)
crt_start = (first_op & 0x1FFFFFF) << 2;
// Find static OP offset that is close to INI1 offset.
u32 counter_ops = 0x100;
while (counter_ops)
{
if (*(u32 *)(kern_data + crt_start + 0x100 - counter_ops) == PKG2_NEWKERN_GET_INI1_HEURISTIC)
{
// OP found. Add 12 for the INI1 info offset.
pkg2_newkern_ini1_info = crt_start + 0x100 - counter_ops + 12;
// On v2 kernel with dynamic crt there's a NOP after heuristic. Offset one op.
if (crt_start)
pkg2_newkern_ini1_info += 4;
break;
}
counter_ops -= 4;
}
// Offset not found?
if (!counter_ops)
return;
u32 info_op = *(u32 *)(kern_data + pkg2_newkern_ini1_info);
pkg2_newkern_ini1_info += ((info_op & 0xFFFF) >> 3); // Parse ADR and PC.
pkg2_newkern_ini1_start = *(u32 *)(kern_data + pkg2_newkern_ini1_info);
pkg2_newkern_ini1_end = *(u32 *)(kern_data + pkg2_newkern_ini1_info + 0x8);
// On v2 kernel with dynamic crt, values are relative to value address.
if (crt_start)
{
pkg2_newkern_ini1_start += pkg2_newkern_ini1_info;
pkg2_newkern_ini1_end += pkg2_newkern_ini1_info + 0x8;
}
}
bool pkg2_parse_kips(link_t *info, pkg2_hdr_t *pkg2, bool *new_pkg2)
{
u8 *ptr;
// Check for new pkg2 type.
if (!pkg2->sec_size[PKG2_SEC_INI1])
{
pkg2_get_newkern_info(pkg2->data);
if (!pkg2_newkern_ini1_start)
return false;
ptr = pkg2->data + pkg2_newkern_ini1_start;
*new_pkg2 = true;
}
else
ptr = pkg2->data + pkg2->sec_size[PKG2_SEC_KERNEL];
pkg2_ini1_t *ini1 = (pkg2_ini1_t *)ptr;
ptr += sizeof(pkg2_ini1_t);
for (u32 i = 0; i < ini1->num_procs; i++)
{
pkg2_kip1_t *kip1 = (pkg2_kip1_t *)ptr;
pkg2_kip1_info_t *ki = (pkg2_kip1_info_t *)malloc(sizeof(pkg2_kip1_info_t));
ki->kip1 = kip1;
ki->size = _pkg2_calc_kip1_size(kip1);
list_append(info, &ki->link);
ptr += ki->size;
DPRINTF(" kip1 %d:%s @ %08X (%08X)\n", i, kip1->name, (u32)kip1, ki->size);
}
return true;
}
int pkg2_has_kip(link_t *info, u64 tid)
{
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link)
if (ki->kip1->tid == tid)
return 1;
return 0;
}
void pkg2_replace_kip(link_t *info, u64 tid, pkg2_kip1_t *kip1)
{
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link)
{
if (ki->kip1->tid == tid)
{
ki->kip1 = kip1;
ki->size = _pkg2_calc_kip1_size(kip1);
DPRINTF("replaced kip %s (new size %08X)\n", kip1->name, ki->size);
return;
}
}
}
void pkg2_add_kip(link_t *info, pkg2_kip1_t *kip1)
{
pkg2_kip1_info_t *ki = (pkg2_kip1_info_t *)malloc(sizeof(pkg2_kip1_info_t));
ki->kip1 = kip1;
ki->size = _pkg2_calc_kip1_size(kip1);
DPRINTF("added kip %s (size %08X)\n", kip1->name, ki->size);
list_append(info, &ki->link);
}
void pkg2_merge_kip(link_t *info, pkg2_kip1_t *kip1)
{
if (pkg2_has_kip(info, kip1->tid))
pkg2_replace_kip(info, kip1->tid, kip1);
else
pkg2_add_kip(info, kip1);
}
static int _decompress_kip(pkg2_kip1_info_t *ki, u32 sectsToDecomp)
{
u32 compClearMask = ~sectsToDecomp;
if ((ki->kip1->flags & compClearMask) == ki->kip1->flags)
return 0; // Already decompressed, nothing to do.
pkg2_kip1_t hdr;
memcpy(&hdr, ki->kip1, sizeof(hdr));
u32 new_kip_size = sizeof(hdr);
for (u32 sect_idx = 0; sect_idx < KIP1_NUM_SECTIONS; sect_idx++)
{
u32 comp_bit_mask = BIT(sect_idx);
// For compressed, cant get actual decompressed size without doing it, so use safe "output size".
if (sect_idx < 3 && (sectsToDecomp & comp_bit_mask) && (hdr.flags & comp_bit_mask))
new_kip_size += hdr.sections[sect_idx].size_decomp;
else
new_kip_size += hdr.sections[sect_idx].size_comp;
}
pkg2_kip1_t *new_kip = malloc(new_kip_size);
u8 *dst_data = new_kip->data;
const u8 *src_data = ki->kip1->data;
for (u32 sect_idx = 0; sect_idx < KIP1_NUM_SECTIONS; sect_idx++)
{
u32 comp_bit_mask = BIT(sect_idx);
// Easy copy path for uncompressed or ones we dont want to uncompress.
if (sect_idx >= 3 || !(sectsToDecomp & comp_bit_mask) || !(hdr.flags & comp_bit_mask))
{
u32 dataSize = hdr.sections[sect_idx].size_comp;
if (dataSize == 0)
continue;
memcpy(dst_data, src_data, dataSize);
src_data += dataSize;
dst_data += dataSize;
continue;
}
u32 comp_size = hdr.sections[sect_idx].size_comp;
u32 output_size = hdr.sections[sect_idx].size_decomp;
gfx_printf("Decomping '%s', sect %d, size %d..\n", (char *)hdr.name, sect_idx, comp_size);
if (blz_uncompress_srcdest(src_data, comp_size, dst_data, output_size) == 0)
{
gfx_con.mute = false;
gfx_printf("%kERROR decomping sect %d of '%s'!%k\n", TXT_CLR_ERROR, sect_idx, (char *)hdr.name, TXT_CLR_DEFAULT);
free(new_kip);
return 1;
}
else
{
DPRINTF("Done! Decompressed size is %d!\n", output_size);
}
hdr.sections[sect_idx].size_comp = output_size;
src_data += comp_size;
dst_data += output_size;
}
hdr.flags &= compClearMask;
memcpy(new_kip, &hdr, sizeof(hdr));
new_kip_size = dst_data - (u8 *)(new_kip);
free(ki->kip1);
ki->kip1 = new_kip;
ki->size = new_kip_size;
return 0;
}
static int _kipm_inject(const char *kipm_path, char *target_name, pkg2_kip1_info_t *ki)
{
if (!strcmp((char *)ki->kip1->name, target_name))
{
u32 size = 0;
u8 *kipm_data = (u8 *)sd_file_read(kipm_path, &size);
if (!kipm_data)
return 1;
u32 inject_size = size - sizeof(ki->kip1->caps);
u8 *kip_patched_data = (u8 *)malloc(ki->size + inject_size);
// Copy headers.
memcpy(kip_patched_data, ki->kip1, sizeof(pkg2_kip1_t));
pkg2_kip1_t *fs_kip = ki->kip1;
ki->kip1 = (pkg2_kip1_t *)kip_patched_data;
ki->size = ki->size + inject_size;
// Patch caps.
memcpy(&ki->kip1->caps, kipm_data, sizeof(ki->kip1->caps));
// Copy our .text data.
memcpy(&ki->kip1->data, kipm_data + sizeof(ki->kip1->caps), inject_size);
u32 new_offset = 0;
for (u32 section_idx = 0; section_idx < KIP1_NUM_SECTIONS - 2; section_idx++)
{
if (!section_idx) // .text.
{
memcpy(ki->kip1->data + inject_size, fs_kip->data, fs_kip->sections[0].size_comp);
ki->kip1->sections[0].size_decomp += inject_size;
ki->kip1->sections[0].size_comp += inject_size;
}
else // Others.
{
if (section_idx < 3)
memcpy(ki->kip1->data + new_offset + inject_size, fs_kip->data + new_offset, fs_kip->sections[section_idx].size_comp);
ki->kip1->sections[section_idx].offset += inject_size;
}
new_offset += fs_kip->sections[section_idx].size_comp;
}
// Patch PMC capabilities for 1.0.0.
if (!emu_cfg.fs_ver)
{
for (u32 i = 0; i < 0x20; i++)
{
if (ki->kip1->caps[i] == 0xFFFFFFFF)
{
ki->kip1->caps[i] = 0x07000E7F;
break;
}
}
}
free(kipm_data);
return 0;
}
return 1;
}
const char *pkg2_patch_kips(link_t *info, char *patch_names)
{
bool emummc_patch_selected = false;
if (patch_names == NULL || patch_names[0] == 0)
return NULL;
gfx_printf("%kPatching kips%k\n", TXT_CLR_ORANGE, TXT_CLR_DEFAULT);
static const u32 MAX_NUM_PATCHES_REQUESTED = sizeof(u32) * 8;
char *patches[MAX_NUM_PATCHES_REQUESTED];
u32 patches_num = 1;
patches[0] = patch_names;
{
for (char *p = patch_names; *p != 0; p++)
{
if (*p == ',')
{
*p = 0;
patches[patches_num++] = p + 1;
if (patches_num >= MAX_NUM_PATCHES_REQUESTED)
return "too_many_patches";
}
else if (*p >= 'A' && *p <= 'Z') // Convert to lowercase.
*p += 0x20;
}
}
u32 patches_applied = 0; // Bitset over patches.
for (u32 i = 0; i < patches_num; i++)
{
// Eliminate leading spaces.
for (const char *p = patches[i]; *p != 0; p++)
{
if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n')
patches[i]++;
else
break;
}
int patch_len = strlen(patches[i]);
if (patch_len == 0)
continue;
// Eliminate trailing spaces.
for (int chIdx = patch_len - 1; chIdx >= 0; chIdx--)
{
const char *p = patches[i] + chIdx;
if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n')
patch_len = chIdx;
else
break;
}
patches[i][patch_len] = 0;
DPRINTF("Requested patch: '%s'\n", patches[i]);
}
// Parse external patches if needed.
for (u32 i = 0; i < patches_num; i++)
{
if (!strcmp(patches[i], "emummc"))
{
// emuMMC patch is managed on its own.
emummc_patch_selected = true;
patches_applied |= BIT(i);
continue;
}
if (strcmp(patches[i], "nogc"))
{
parse_external_kip_patches();
break;
}
}
u32 kip_hash[SE_SHA_256_SIZE / sizeof(u32)];
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link)
{
// Reset hash so it can be calculated for the new kip.
kip_hash[0] = 0;
bool emummc_patch_apply = emummc_patch_selected && !strcmp((char *)ki->kip1->name, "FS");
// Check all SHA256 ID sets. (IDs are grouped per KIP. IDs are still unique.)
for (u32 kip_id_idx = 0; kip_id_idx < _kip_id_sets_cnt; kip_id_idx++)
{
// Check if KIP name macthes ID's KIP name.
if (strcmp((char *)ki->kip1->name, _kip_id_sets[kip_id_idx].name) != 0)
continue;
// Check if there are patches to apply.
bool patches_found = false;
kip1_patchset_t *patchset = _kip_id_sets[kip_id_idx].patchset;
while (patchset != NULL && patchset->name != NULL && !patches_found)
{
for (u32 i = 0; i < patches_num; i++)
{
// Continue if patch name does not match.
if (strcmp(patchset->name, patches[i]) != 0)
continue;
patches_found = true;
break;
}
patchset++;
}
// Don't bother hashing this KIP if no patches are enabled for it.
if (!patches_found && !emummc_patch_apply)
continue;
// Check if current KIP not hashed and hash it.
if (kip_hash[0] == 0)
if (!se_calc_sha256_oneshot(kip_hash, ki->kip1, ki->size))
memset(kip_hash, 0, sizeof(kip_hash));
// Check if kip is the expected version.
if (memcmp(kip_hash, _kip_id_sets[kip_id_idx].hash, sizeof(_kip_id_sets[0].hash)) != 0)
continue;
// Find out which sections are affected by the enabled patches, in order to decompress them.
u32 sections_affected = 0;
patchset = _kip_id_sets[kip_id_idx].patchset;
while (patchset != NULL && patchset->name != NULL)
{
if (patchset->patches != NULL)
{
for (u32 patch_idx = 0; patch_idx < patches_num; patch_idx++)
{
if (strcmp(patchset->name, patches[patch_idx]))
continue;
for (const kip1_patch_t *patch = patchset->patches; patch != NULL && (patch->length != 0); patch++)
sections_affected |= BIT(GET_KIP_PATCH_SECTION(patch->offset));
}
}
patchset++;
}
// If emuMMC is enabled, set its affected section.
if (emummc_patch_apply)
sections_affected |= BIT(KIP_TEXT);
// Got patches to apply to this kip, have to decompress it.
if (_decompress_kip(ki, sections_affected))
return (char *)ki->kip1->name; // Failed to decompress.
// Apply all patches for matched ID.
patchset = _kip_id_sets[kip_id_idx].patchset;
while (patchset != NULL && patchset->name != NULL)
{
for (u32 patch_idx = 0; patch_idx < patches_num; patch_idx++)
{
// Check if patchset name matches requested patch.
if (strcmp(patchset->name, patches[patch_idx]))
continue;
u32 applied_mask = BIT(patch_idx);
// Check if patchset is empty.
if (patchset->patches == NULL)
{
DPRINTF("Patch '%s' not necessary for %s\n", patchset->name, (char *)ki->kip1->name);
patches_applied |= applied_mask;
continue; // Continue in case it's double defined.
}
// Apply patches per section.
u8 *kip_sect_data = ki->kip1->data;
for (u32 section_idx = 0; section_idx < KIP1_NUM_SECTIONS; section_idx++)
{
if (sections_affected & BIT(section_idx))
{
gfx_printf("Applying '%s' on %s, sect %d\n", patchset->name, (char *)ki->kip1->name, section_idx);
for (const kip1_patch_t *patch = patchset->patches; patch != NULL && patch->src_data != NULL; patch++)
{
// Check if patch is in current section.
if (GET_KIP_PATCH_SECTION(patch->offset) != section_idx)
continue;
// Check if patch is empty.
if (!patch->length)
{
gfx_con.mute = false;
gfx_printf("%kPatch empty!%k\n", TXT_CLR_ERROR, TXT_CLR_DEFAULT);
return patchset->name; // MUST stop here as it's not probably intended.
}
// If source does not match and is not already patched, throw an error.
u32 patch_offset = GET_KIP_PATCH_OFFSET(patch->offset);
if (patch->src_data != KIP1_PATCH_SRC_NO_CHECK &&
(memcmp(&kip_sect_data[patch_offset], patch->src_data, patch->length) != 0) &&
(memcmp(&kip_sect_data[patch_offset], patch->dst_data, patch->length) != 0))
{
gfx_con.mute = false;
gfx_printf("%kPatch mismatch at 0x%x!%k\n", TXT_CLR_ERROR, patch_offset, TXT_CLR_DEFAULT);
return patchset->name; // MUST stop here as kip is likely corrupt.
}
else
{
DPRINTF("Patching %d bytes at offset 0x%x\n", patch->length, patch_offset);
memcpy(&kip_sect_data[patch_offset], patch->dst_data, patch->length);
}
}
}
kip_sect_data += ki->kip1->sections[section_idx].size_comp;
}
patches_applied |= applied_mask;
}
patchset++;
}
// emuMMC must be applied after all other patches, since it affects TEXT offset.
if (emummc_patch_apply)
{
// Encode ID.
emu_cfg.fs_ver = kip_id_idx;
if (kip_id_idx)
emu_cfg.fs_ver--;
if (kip_id_idx > 17)
emu_cfg.fs_ver -= 2;
// Inject emuMMC code.
gfx_printf("Injecting emuMMC. FS ID: %d\n", emu_cfg.fs_ver);
if (_kipm_inject("bootloader/sys/emummc.kipm", "FS", ki))
return "emummc";
// Skip checking again.
emummc_patch_selected = false;
emummc_patch_apply = false;
}
}
}
// Check if all patches were applied.
for (u32 i = 0; i < patches_num; i++)
{
if ((patches_applied & BIT(i)) == 0)
return patches[i];
}
return NULL;
}
// Master key 7 encrypted with 8. (7.0.0 with 8.1.0). AES-ECB
static const u8 mkey_vector_7xx[SE_KEY_128_SIZE] =
{ 0xEA, 0x60, 0xB3, 0xEA, 0xCE, 0x8F, 0x24, 0x46, 0x7D, 0x33, 0x9C, 0xD1, 0xBC, 0x24, 0x98, 0x29 };
u8 pkg2_keyslot;
pkg2_hdr_t *pkg2_decrypt(void *data, u8 kb, bool is_exo)
{
u8 *pdata = (u8 *)data;
// Skip signature.
pdata += 0x100;
pkg2_hdr_t *hdr = (pkg2_hdr_t *)pdata;
// Skip header.
pdata += sizeof(pkg2_hdr_t);
// Set pkg2 key slot to default. If 7.0.0 it will change to 9.
pkg2_keyslot = 8;
// Decrypt 7.0.0 pkg2 via 8.1.0 mkey on Erista.
if (!h_cfg.t210b01 && kb == HOS_KB_VERSION_700)
{
u8 tmp_mkey[SE_KEY_128_SIZE];
// Decrypt 7.0.0 encrypted mkey.
se_aes_crypt_ecb(!is_exo ? 7 : 13, DECRYPT, tmp_mkey, SE_KEY_128_SIZE, mkey_vector_7xx, SE_KEY_128_SIZE);
// Set and unwrap pkg2 key.
se_aes_key_set(9, tmp_mkey, SE_KEY_128_SIZE);
se_aes_unwrap_key(9, 9, package2_keyseed);
pkg2_keyslot = 9;
}
// Decrypt header.
se_aes_crypt_ctr(pkg2_keyslot, hdr, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr);
if (hdr->magic != PKG2_MAGIC)
return NULL;
// Decrypt sections.
for (u32 i = 0; i < 4; i++)
{
DPRINTF("sec %d has size %08X\n", i, hdr->sec_size[i]);
if (!hdr->sec_size[i])
continue;
se_aes_crypt_ctr(pkg2_keyslot, pdata, hdr->sec_size[i], pdata, hdr->sec_size[i], &hdr->sec_ctr[i * SE_AES_IV_SIZE]);
pdata += hdr->sec_size[i];
}
return hdr;
}
static u32 _pkg2_ini1_build(u8 *pdst, u8 *psec, pkg2_hdr_t *hdr, link_t *kips_info, bool new_pkg2)
{
// Calculate INI1 size.
u32 ini1_size = sizeof(pkg2_ini1_t);
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, kips_info, link)
{
ini1_size += ki->size;
}
// Align size and set it.
ini1_size = ALIGN(ini1_size, 4);
// For new kernel if INI1 fits in the old one, use it.
bool use_old_ini_region = psec && ini1_size <= (pkg2_newkern_ini1_end - pkg2_newkern_ini1_start);
if (use_old_ini_region)
pdst = psec + pkg2_newkern_ini1_start;
// Set initial header and magic.
pkg2_ini1_t *ini1 = (pkg2_ini1_t *)pdst;
memset(ini1, 0, sizeof(pkg2_ini1_t));
ini1->magic = INI1_MAGIC;
ini1->size = ini1_size;
pdst += sizeof(pkg2_ini1_t);
// Merge KIPs into INI1.
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, kips_info, link)
{
DPRINTF("adding kip1 '%s' @ %08X (%08X)\n", (char *)ki->kip1->name, (u32)ki->kip1, ki->size);
memcpy(pdst, ki->kip1, ki->size);
pdst += ki->size;
ini1->num_procs++;
}
// Encrypt INI1 in its own section if old pkg2. Otherwise it gets embedded into Kernel.
if (!new_pkg2)
{
hdr->sec_size[PKG2_SEC_INI1] = ini1_size;
hdr->sec_off[PKG2_SEC_INI1] = 0x14080000;
se_aes_crypt_ctr(8, ini1, ini1_size, ini1, ini1_size, &hdr->sec_ctr[PKG2_SEC_INI1 * SE_AES_IV_SIZE]);
}
else
{
hdr->sec_size[PKG2_SEC_INI1] = 0;
hdr->sec_off[PKG2_SEC_INI1] = 0;
}
return !use_old_ini_region ? ini1_size : 0;
}
void pkg2_build_encrypt(void *dst, void *hos_ctxt, link_t *kips_info, bool is_exo)
{
launch_ctxt_t *ctxt = (launch_ctxt_t *)hos_ctxt;
u32 meso_magic = *(u32 *)(ctxt->kernel + 4);
u32 kernel_size = ctxt->kernel_size;
u8 kb = ctxt->pkg1_id->kb;
u8 *pdst = (u8 *)dst;
// Force new Package2 if Mesosphere.
bool is_meso = (meso_magic & 0xF0FFFFFF) == ATM_MESOSPHERE;
if (is_meso)
ctxt->new_pkg2 = true;
// Set key version. For Erista 7.0.0, use 8.1.0 because of a bug in Exo2?
u8 key_ver = kb ? kb + 1 : 0;
if (pkg2_keyslot == 9)
{
key_ver = HOS_KB_VERSION_810 + 1;
pkg2_keyslot = 8;
}
// Signature.
memset(pdst, 0, 0x100);
pdst += 0x100;
// Header.
pkg2_hdr_t *hdr = (pkg2_hdr_t *)pdst;
memset(hdr, 0, sizeof(pkg2_hdr_t));
// Set initial header values.
hdr->magic = PKG2_MAGIC;
hdr->bl_ver = 0;
hdr->pkg2_ver = 0xFF;
if (!ctxt->new_pkg2)
hdr->base = 0x10000000;
else
hdr->base = 0x60000;
DPRINTF("%s @ %08X (%08X)\n", is_meso ? "Mesosphere": "kernel",(u32)ctxt->kernel, kernel_size);
pdst += sizeof(pkg2_hdr_t);
// Kernel.
memcpy(pdst, ctxt->kernel, kernel_size);
if (!ctxt->new_pkg2)
hdr->sec_off[PKG2_SEC_KERNEL] = 0x10000000;
else
{
// Build INI1 for new Package2.
u32 ini1_size = _pkg2_ini1_build(pdst + kernel_size, is_meso ? NULL : pdst, hdr, kips_info, true);
hdr->sec_off[PKG2_SEC_KERNEL] = 0x60000;
// Set new INI1 offset to kernel.
u32 meso_meta_offset = *(u32 *)(pdst + 8);
if (is_meso && (meso_magic & 0xF000000)) // MSS1.
*(u32 *)(pdst + meso_meta_offset) = kernel_size - meso_meta_offset;
else if (ini1_size)
*(u32 *)(pdst + (is_meso ? 8 : pkg2_newkern_ini1_info)) = kernel_size;
kernel_size += ini1_size;
}
hdr->sec_size[PKG2_SEC_KERNEL] = kernel_size;
se_aes_crypt_ctr(pkg2_keyslot, pdst, kernel_size, pdst, kernel_size, &hdr->sec_ctr[PKG2_SEC_KERNEL * SE_AES_IV_SIZE]);
pdst += kernel_size;
DPRINTF("kernel encrypted\n");
// Build INI1 for old Package2.
u32 ini1_size = 0;
if (!ctxt->new_pkg2)
ini1_size = _pkg2_ini1_build(pdst, NULL, hdr, kips_info, false);
DPRINTF("INI1 encrypted\n");
if (!is_exo) // Not needed on Exosphere 1.0.0 and up.
{
// Calculate SHA256 over encrypted Kernel and INI1.
u8 *pk2_hash_data = (u8 *)dst + 0x100 + sizeof(pkg2_hdr_t);
se_calc_sha256_oneshot(&hdr->sec_sha256[SE_SHA_256_SIZE * PKG2_SEC_KERNEL],
(void *)pk2_hash_data, hdr->sec_size[PKG2_SEC_KERNEL]);
pk2_hash_data += hdr->sec_size[PKG2_SEC_KERNEL];
se_calc_sha256_oneshot(&hdr->sec_sha256[SE_SHA_256_SIZE * PKG2_SEC_INI1],
(void *)pk2_hash_data, hdr->sec_size[PKG2_SEC_INI1]);
}
// Encrypt header.
*(u32 *)hdr->ctr = 0x100 + sizeof(pkg2_hdr_t) + kernel_size + ini1_size;
hdr->ctr[4] = key_ver;
se_aes_crypt_ctr(pkg2_keyslot, hdr, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr);
memset(hdr->ctr, 0 , SE_AES_IV_SIZE);
*(u32 *)hdr->ctr = 0x100 + sizeof(pkg2_hdr_t) + kernel_size + ini1_size;
hdr->ctr[4] = key_ver;
}